7. Proper Oscillation in a Bay

0 . Introduction

Kata bay is located on the southeast coast of the Kii peninsula, and tsunamis have hit the bay four times in the modern era-in 1707 (Hoei Earthquake), 1854 (Ansei-Tokai Earthquake), 1944 (Tonankai Earthquake), and 1946 (Nankai Earthquake). Kata bay has three sub-divisions, and there are ten villages along its coast. The village Kata is situated on the coast of the western branch; the maximum tsunami height was recorded in this branch every single time.

1. Method of Solving Eigenvalue Oscillation in a Bay

1.1 Formulation of Governing Equation of Water Surface Displacement

In the present chapter, we discuss proper oscillations (eigenvalue oscillation, Seiche) in a bay or in a lake of arbitrary shape and an uneven bottom; moreover, we discuss how a numerical solution can be obtained.

We take a co-ordinate system that covers the bay area, as shown in Fig. 1, and assume an x, y-axis; Then, we set a grid mesh covering the entire bay. One mesh square is counted as a combination of i and j in the x and y directions, respectively.
The equations of motion are given by

$$
\begin{align*}
& \frac{\partial u}{\partial t}=-g \frac{\partial \zeta}{\partial x} \tag{1}\\
& \frac{\partial v}{\partial t}=-g \frac{\partial \zeta}{\partial x} \tag{2}
\end{align*}
$$

where (u, v) is the horizontal particle velocity, g is the acceleration due to gravity, and ζ is the displacement of the sea surface.

The equation of mass conservation takes the following form:

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}=-\left\{\frac{\partial(D u)}{\partial x}+\frac{\partial(D v)}{\partial y}\right\} \tag{3}
\end{equation*}
$$

Differentiating (3) with t, and substituting u and v by using (1) and (2), (D is a constant for time t), we have the following equation of motion for ζ :

$$
\begin{equation*}
\frac{\partial^{2} \zeta}{\partial t^{2}}=g\left\{\frac{\partial}{\partial x}\left(D \frac{\partial \zeta}{\partial x}\right)+\frac{\partial}{\partial y}\left(D \frac{\partial \zeta}{\partial y}\right)\right\} \tag{4}
\end{equation*}
$$

We substitute $\zeta=Z(x, y) e^{-i \sigma t}$ and equation (4) becomes

$$
\begin{equation*}
-\sigma^{2} Z=g\left\{\frac{\partial}{\partial x}\left(D \frac{\partial Z}{\partial x}\right)+\frac{\partial}{\partial y}\left(D \frac{\partial Z}{\partial y}\right)\right\} \tag{5}
\end{equation*}
$$

We rewrite this differential equation into a difference equation; further, we use $-\frac{l^{2} \sigma^{2}}{g} \equiv \lambda$, where l is the grid size. Equation (5) is transferred into the following equation:

$$
\begin{aligned}
& \lambda Z_{i, j}=\frac{\left(D_{i+1, j}+D_{i, j}\right)}{2} Z_{i+1, j}+\frac{\left(D_{i-1}+D_{i, j}\right)}{2} Z_{i-1, j}+\frac{\left(D_{i, j+1}+D_{i, j}\right)}{2} Z_{i, j+1}+\frac{\left(D_{i, j-1}+D_{i, j}\right)}{2} Z_{i, j-1} \\
& -\left(2 D_{i, j}+\frac{D_{i+1, j}+D_{i-1, j}+D_{i, j+1}+D_{i, j-1}}{2}\right) Z_{i, j}
\end{aligned}
$$

Note: Such a transfer of equation (5) is not unique .It is possible to transfer the term of $\frac{\partial}{\partial x}\left(D \frac{\partial Z}{\partial x}\right)$ in different ways. In the present study, we re-write it as follows:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(D \frac{\partial Z}{\partial x}\right)=\frac{\partial D}{\partial x} \frac{\partial Z}{\partial x}+D \frac{\partial^{2} Z}{\partial x^{2}} \tag{6}
\end{equation*}
$$

This is transferred in the following manner:

$$
\begin{equation*}
\text { (7) }=\frac{\left\{\left(D_{i+1}-D_{i}\right) \times\left(Z_{i+1}-Z_{i}\right)+\left(D_{i}-D_{i-1}\right) \times\left(Z_{i}-Z_{i-1}\right)\right\}}{2 l^{2}}+D_{i} \frac{\left(Z_{i+1}-2 Z_{i}+Z_{i-1}\right)}{l^{2}} \tag{6-a}
\end{equation*}
$$

Equation (6) is derived through this formulation.
On the other hand, it is also possible to transfer in the another manner:

$$
\begin{equation*}
\text { (7) }=\frac{\left(D_{i+1}-D_{i-1}\right)}{2 l} \times \frac{\left(Z_{i+1}-Z_{i-1}\right)}{2 l}+D_{i} \frac{\left(Z_{i+1}-2 Z_{i}+Z_{i-1}\right)}{l^{2}} \tag{6-b}
\end{equation*}
$$

From this, we obtain an expanded form that is different from (6) as follows:

$$
\begin{aligned}
\lambda Z_{i, j} & =\frac{D_{i+1, j}+4 D_{i, j}-D_{i-1, j}}{4 l^{2}} Z_{i+1, j}+\frac{-D_{i+1, j}+4 D_{i, j}+D_{i-1, j}}{4 l^{2}} Z_{i-1, j}+ \\
& +\frac{D_{i, j+1}+4 D_{i, j}-D_{i, j-1}}{4 l^{2}} Z_{i, j+1}+\frac{-4 D_{i, j+1}+4 D_{i, j}+D_{i, j-1}}{4 l^{2}}-D_{i, j} Z_{i, j} / l^{2} \quad(6-\mathrm{x})
\end{aligned}
$$

In the present study, we do not adopt the above form.

1.2 Boundary conditions

We should consider two kinds of boundaries: coastal boundary and open ocean boundary.
(A) Coastal boundary

We assume that we now consider the grid mesh at (i, j), and that the right side of the mesh is a coastline. In this case, since no stream crosses the coastline, we can set $u=0$ at the coastline. Equation (1) shows that

$$
\frac{\partial u}{\partial t}=-g \frac{\partial \varsigma}{\partial x} \text { Hence, when } u=0, \text { we have } \partial \varsigma / \partial x=0 \text { at the coastline }
$$ mirror reflection). Thus we have the following coastal boundary condition in the positive x direction.

$$
\begin{equation*}
Z_{i+1, j}=Z_{i, j} \tag{7}
\end{equation*}
$$

By substituting (7) in (6), we have

$$
\lambda Z_{i, j}=\frac{\left(D_{i-1}+D_{i, j}\right)}{2} Z_{i-1, j}+\frac{\left(D_{i, j+1}+D_{i, j}\right)}{2} Z_{i, j+1}+\frac{\left(D_{i, j-1}+D_{i, j}\right)}{2} Z_{i, j-1}-\left(\frac{3}{2} D_{i, j}+\frac{D_{i-1, j}+D_{i, j+1}+D_{i, j-1}}{2}\right) Z_{i, j}
$$

This is the expression for the coastline condition on the right side in the form of a finite difference equation.
(B) Open ocean condition

We assume that the upper side of the grid mesh (i, j) is adjacent to the open ocean, where ς is sufficiently small, and that depth in the open ocean area is sufficiently large. This condition can be expressed by using $\zeta=0$, and the depth beyond the boundary has a sufficiently large value. Hence, we use $Z_{i, j+1}=0 \quad((i, j+1)$ is the mesh location of the upper adjoining grid of the grid $(i, j))$ and $D_{i, j+1}=1000 D_{i, j}$.

1.3 One-dimensional Numbering

We re-number the grids of a water area sequentially from the upper row to the bottom and from left to right; the counter is set as k. Thus, the left-most sea grid in the uppermost row has the number $k=1$, and the adjacent grid on the right has $k=2$.

Hereafter, we do not use grid (i, j) in equation (6), but instead use k. For example, we can write (6) for the grid of $k=14$ in the following form:

$$
\begin{align*}
\lambda Z_{14}=\frac{D_{15}+D_{14}}{2} & Z_{15}+\frac{D_{13}+D_{14}}{2} Z_{13}+\frac{D_{8}+D_{14}}{2} Z_{8}+\frac{D_{20}+D_{14}}{2} Z_{20}- \\
& -\left\{2 D_{14}+\frac{D_{13}+D_{15}+D_{8}+D_{20}}{2}\right\} Z_{14} \tag{8}
\end{align*}
$$

Here, we introduce

$$
\begin{aligned}
& \left(D_{15}+D_{14}\right) / 2=R_{14},\left(D_{8}+D_{14}\right) / 2=L_{14}, \\
& \frac{\left(D_{18}+D_{14}\right)}{2}=H_{14}, \frac{\left(D_{20}+D_{14}\right)}{2}=U_{14} \text { and }-\left\{2 D_{14}+\frac{D_{13}+D_{15}+D_{8}+D_{20}}{2}\right\}=T_{14} \\
& \left(\text { Note: } R_{14}+L_{14}+H_{14}+D_{14}=T_{14}\right)
\end{aligned}
$$

1.4 Introduction of Matrix Form

We can express (8) in the following form:

$$
\left(H_{14}, L_{14}, T_{14}, R_{14}, U_{14}\right)\left(\begin{array}{l}
Z_{8} \tag{9}\\
Z_{13} \\
Z_{14} \\
Z_{15} \\
Z_{20}
\end{array}\right)=\lambda Z_{14}
$$

Equation (19) is valid not only for $k=14$, but also for all grids from $k=1$ to $k=37$ (in the case of Fig. 2) ; thus, (9) can be written in the following form:

This is a diagonally symmetric matrix with a size of 37×37. Tri-diagonal components have non-zero values, and in addition, two components are non-zero in each row (why?). (H_{1}, L_{1}, and R_{37}, U_{37} do not exist. Why?).

We simply re-write the square matrix in the left side of (10) as A and the one-dimensional vector $\left\{Z_{k}\right\}$ as Z; (10) can then simply be expressed as

$$
\begin{equation*}
A Z=\lambda Z \tag{11}
\end{equation*}
$$

(11) is a normal form of the eigenvalue equation of a matrix.

1.5 Banded Storage Matrix

Only five non-zero values appear in one row, and they are arranged within the length of a $2 N_{b}+1\left(N_{b}=j_{\max }\right)$ grid whose central grid is a component of the diagonal elements. Moreover, the matrix is a diagonally symmetric one. Such a matrix is called "a banded symmetric matrix" and $2 \mathrm{Nb}+1$ is the "band width." The size of the original Matrix A is $N \times N$. We can save the necessary memory by using a "banded storage matrix" that has the size of $N \times\left(N_{b}+1\right)$.

Fig. 3-a Original Matrix

Fig. 3-b Banded Storage Matrix

The Fortran subroutine for obtaining the eigenvalue $\lambda_{l}(l=1,2, \cdots, N)$ and the corresponding eigenvector $\left\{Z_{\lambda, k}\right\}$ of a given banded symmetric matrix A or its equivalent banded storage matrix A_{b} is generally present in Fortran's library, and you need not prepare this subroutine on your own.

1.6 Solution of the Eigenvalue Oscillation in a Bay

You can easily select a set of eigenvalues $\lambda_{k}(k=1, \ldots, 37)$ and the corresponding eigenvalue vectors $\left\{\mathrm{Z}_{\lambda, k}\right\}$. In generally, it is sufficient to select the eigenvalue upto the fifth largest one. Higher-order eigenvalues exist mathematically, but most of the higher-order eigenvalue oscillations are not actually observed in a real sea.

Each eigenvalue $\left\{\lambda_{k}\right\}$ should be negative value, because we defined the λ-value as $-\frac{l^{2} \sigma^{2}}{g} \equiv \lambda$.

1.7 Oscillation Pattern and Oscillation Period

If we re-arrange a one-dimensional eigenvalue vector into two dimensions $Z_{\lambda, k} \rightarrow Z_{\lambda}(i, j)$ and then plot it on the map of the bay, we obtain a chart showing the pattern of the eigenvalue oscillation.

The period of the corresponding oscillations are obtained by

$$
\begin{equation*}
\sigma^{2}=-\frac{g \lambda}{l^{2}} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
T=2 \pi \sqrt{-\frac{l^{2}}{g \lambda}} \tag{13}
\end{equation*}
$$

