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７. Proper Oscillation in a Bay    

0. Introduction  
  Kata bay is located on the southeast coast of the Kii peninsula, and tsunamis have 
hit the bay four times in the modern era—in 1707 (Hoei Earthquake), 1854 
(Ansei-Tokai Earthquake), 1944 (Tonankai Earthquake), and 1946 (Nankai 
Earthquake).  Kata bay has three sub-divisions, and there are ten villages along its 
coast.  The village Kata is situated on the coast of the western branch; the maximum 
tsunami height was recorded in this branch every single time.  
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１. Method of Solving Eigenvalue Oscillation in a Bay 
1.1 Formulation of Governing Equation of Water Surface Displacement 
  In the present chapter, we discuss proper oscillations (eigenvalue oscillation, Seiche) 
in a bay or in a lake of arbitrary shape and an uneven bottom; moreover, we discuss 
how a numerical solution can be obtained.                                  
   We take a co-ordinate system that covers the bay area, as shown in Fig. 1, and 

assume an yx, -axis; Then, we set a grid mesh covering the entire bay.  One mesh 
square is counted as a combination of i  and j  in the x  and y  directions, 
respectively. 
The equations of motion are given by 
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where (u,v) is the horizontal particle velocity, g is the acceleration due to gravity, and ζ 
is the displacement of the sea surface. 
  The equation of mass conservation takes the following form:  
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Differentiating (3) with t , and substituting u  and v  by using (1)and (2),（D  is a 
constant for time t）, we have the following equation of motion for ζ: 
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 We substitute tieyxZ σζ −= ),(  and equation (4) becomes 
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We rewrite this differential equation into a difference equation; further, we use 

λσ ≡−
g

l 22

, where l  is the grid size.  Equation (5) is transferred into the following 

equation: 
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Note: Such a transfer of equation (5) is not unique .It is possible to transfer the term of 
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This is transferred in the following manner: 
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Equation (6) is derived through this formulation.   

On the other hand, it is also possible to transfer in the another manner: 
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From this, we obtain an expanded form that is different from (6) as follows: 
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In the present study, we do not adopt the above form.   
 
1.2 Boundary conditions 
   We should consider two kinds of boundaries: coastal boundary and  open ocean 
boundary.    

(A) Coastal boundary 
We assume that we now consider the grid mesh at ),( ji , and that the right side 
of the mesh is a coastline.  In this case, since no stream crosses the coastline,  

we can set 0=u  at the coastline.  Equation (1) shows that  
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Hence, when 0=u , we have 0=∂∂ xς  at the coastline (a 

mirror reflection). Thus we have the following coastal boundary condition in the 
positive x direction. 

  jiji ZZ ,,1 =+                                               (7) 

By substituting (7) in (6), we have 
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This is the expression for the coastline condition on the right side in the form of a finite 
difference equation.  

(B) Open ocean condition  
We assume that the upper side of the grid mesh ),( ji  is adjacent to the open 
ocean, where ς  is sufficiently small, and that depth in the open ocean area is 
sufficiently large.  This condition can be expressed by using ζ＝0, and the 
depth beyond the boundary has a sufficiently large value.  Hence, we use 

01, =+jiZ   (( )1, +ji  is the mesh location of the upper adjoining grid of the grid 

( ), ji ) and jiji DD ,1, 1000=+ . 

  

   
1.3 One-dimensional Numbering                                                      
  We re-number the grids of a water area sequentially from the upper row to the 
bottom and from left to right; the counter is set as k.   Thus, the left-most sea grid in 
the uppermost row has the number 1=k , and the adjacent grid on the right has 

2=k .  
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 Hereafter, we do not use grid ( )ji,  in equation (6), but instead use k .  For 
example, we can write (6) for the grid of 14=k  in the following form: 
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Here, we introduce 
 ( ) 141415 2 RDD =+ , ( ) 14148 2 LDD =+ , 
( )

14
1418

2
H

DD
=

+
,
( )

14
1420

2
U

DD
=

+
  and 14

2081513
14 2

2 T
DDDD

D =
⎭
⎬
⎫

⎩
⎨
⎧ +++

+−  

（Note: 1414141414 TDHLR =+++ ） 
1.4 Introduction of Matrix Form 

We can express (8) in the following form: 
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  Equation (19) is valid not only for 14=k , but also for all grids from 1=k  to 
37=k （in the case of Fig. 2）; thus, （9）can be written in the following form: 
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 This is a diagonally symmetric matrix with a size of 37 × 37.  Tri-diagonal 
components have non-zero values, and in addition, two components are non-zero in 
each row (why?).  （ 11 , LH  , and 3737 ,UR  do not exist. Why?）. 

We simply re-write the square matrix in the left side of (10) as A  and the 
one-dimensional vector { }kZ  as Z; (10) can then simply be expressed as  

        ZAZ λ=                                               (11) 
(11) is a normal form of the eigenvalue equation of a matrix. 
 
1.5 Banded Storage Matrix 

Only five non-zero values appear in one row, and they are arranged within the 

length of a 12 +bN  )( maxjNb =  grid whose central grid is a component of the 

diagonal elements.   Moreover, the matrix is a diagonally symmetric one.  Such a 
matrix is called “a banded symmetric matrix” and 2Nb+1 is the “band width.”  The 
size of the original Matrix A  is NN × . We can save the necessary memory by using 
a “banded storage matrix” that has the size of ( )1+× bNN . 
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 The Fortran subroutine for obtaining the eigenvalue ),,2,1( Nll ⋅⋅⋅=λ  and the 

corresponding eigenvector { }kZ ,λ  of a given banded symmetric matrix A  or its 

equivalent banded storage matrix bA  is generally present in Fortran’s library, and 
you need not prepare this subroutine on your own. 

 
1.6 Solution of the Eigenvalue Oscillation in a Bay 

   You can easily select a set of eigenvalues kλ （ =k 1,..., 37） and the 

corresponding eigenvalue vectors { }kZ ,λ .  In generally, it is sufficient to select the 

eigenvalue upto the fifth largest one.  Higher-order eigenvalues exist mathematically, 
but most of the higher-order eigenvalue oscillations are not actually observed in a real 
sea. 

Each eigenvalue { }kλ  should be negative value, because we defined the λ-value 

as  λσ ≡−
g

l 22

.  

 
1.7 Oscillation Pattern and Oscillation Period   

 If we re-arrange a one-dimensional eigenvalue vector into two dimensions 

),(, jiZZ k λλ →  and then plot it on the map of the bay, we obtain a chart showing the 

pattern of the eigenvalue oscillation.   
The period of the corresponding oscillations are obtained by  
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